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Abstract In this article we present a new and efficient method for solving equilibrium
problems on polyhedra. The method is based on an interior-quadratic proximal term which
replaces the usual quadratic proximal term. This leads to an interior proximal type algorithm.
Each iteration consists in a prediction step followed by a correction step as in the extragradi-
ent method. In a first algorithm each of these steps is obtained by solving an unconstrained
minimization problem, while in a second algorithm the correction step is replaced by an
Armijo-backtracking linesearch followed by an hyperplane projection step. We prove that
our algorithms are convergent under mild assumptions: pseudomonotonicity for the two
algorithms and a Lipschitz property for the first one. Finally we present some numerical
experiments to illustrate the behavior of the proposed algorithms.

Keywords Interior proximal method · Logarithmic-quadratic proximal method ·
Extragradient method · Armijo-backtracking linesearch · Equilibrium problems

1 Introduction

An equilibrium problem in the sense of Blum and Oettli [12], denoted EP, is to find a point
x∗ ∈ C such that

f (x∗, y) ≥ 0 for all y ∈ C,

T. T. Van Nguyen · J.-J. Strodiot · V. H. Nguyen
Department of Mathematics, University of Namur (FUNDP), Namur, Belgium

J.-J. Strodiot
e-mail: jean-jacques.strodiot@fundp.ac.be

V. H. Nguyen
e-mail: vhnguyen@fundp.ac.be

T. T. Van Nguyen (B)
Faculty of Mathematics and Informatics, University of Natural Sciences, Vietnam National University,
Ho Chi Minh City, Vietnam
e-mail: tvnguyen@fundp.ac.be

123



176 J Glob Optim (2009) 44:175–192

where C is a closed convex subset of IRn and f : C × C → IR satisfies f (x, x) = 0 for all
x ∈ C . In this article, we assume that C is a polyhedral set with a nonempty interior given
by

C = { x | Ax ≤ b },
with A an m × n (m ≥ n) matrix of full rank with rows ai , and b is a vector in IRm with rows
bi . An important example of such a C is the nonnegative orthant of IRn . We also assume
that f is continuous on C × C and that f (x, ·) is convex and subdifferentiable on C for all
x ∈ C . We denote by S∗ the solution set of EP and we assume that there exists at least one
solution to problem EP. Existence results for this problem can be found, for instance, in [12].

This problem is very general in the sense that it includes, as particular cases, the optimi-
zation problem, the variational inequality problem, the Nash equilibrium problem in non-
cooperative games, the fixed point problem, the nonlinear complementarity problem and
the vector optimization problem (see, for instance, Blum and Oettli [12] and the references
quoted therein). The interest of this problem is that it unifies all these particular problems in
a convenient way. Moreover, many methods devoted to solving one of these problems can
be extended, with suitable modifications, to solving the general equilibrium problem.

A typical method to solve the equilibrium problem is based on a fixed-point formulation
of EP which starts with a point x0 ∈ C and generates a sequence {xk} defined, for all k ∈ IN ,
by

xk+1 = arg min
x∈C

f (xk, x).

However, this problem, in general, may not have a solution, and if it does, the solution may
not be unique. To avoid this situation, it is more convenient to use the auxiliary problem
principle (see Cohen [14]) which is based on the following fixed point property: x∗ ∈ C is a
solution of problem EP if and only if it is a solution of the regularized problem

min
y∈C

{
c f (x∗, y)+ 1

2
‖x∗ − y‖2

}
,

where c > 0. Observe that this problem has a unique solution. As a result, the corresponding
fixed point iteration is: Given xk ∈ C, find xk+1 ∈ C the solution of

min
y∈C

{
ck f (xk, y)+ 1

2
‖xk − y‖2

}
. (1)

This method has been proven to be convergent by Mastroeni [22] under the assumptions
that f is strongly monotone on C × C , i.e., that there exists γ > 0 such that

f (x, y)+ f (y, x) ≤ −γ ‖y − x‖2 ∀ x, y ∈ C,

and that f satisfies the following property: there exist c1, c2 > 0 such that

∀x, y, z ∈ C f (x, y)+ f (y, z) ≥ f (x, z)− c1‖y − x‖2 − c2‖z − y‖2. (2)

This is a Lipschitz-type condition. Indeed, when f (x, y) = 〈F(x), y−x〉with F: IRn → IRn ,
problem EP amounts to the variational inequality problem: find x∗ ∈ C such that 〈F(x∗), y−
x∗〉 ≥ 0 for all y ∈ C . In that case, f (x, y) + f (y, z) − f (x, z) = 〈F(x) − F(y), y − z〉
for all x, y, z ∈ C , and it is easy to see that if F is Lipschitz continuous on C (with constant
L > 0), then for all x, y, z ∈ C ,

|〈F(x)− F(y), y − z〉| ≤ L‖x − y‖ ‖y − z‖ ≤ L

2
[‖x − y‖2 + ‖y − z‖2],
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and thus, f satisfies condition (2). Furthermore, when z = x , this condition becomes

f (x, y)+ f (y, x) ≥ −(c1 + c2) ‖y − x‖2 ∀ x, y ∈ C.

This gives a lower bound on f (x, y)+ f (y, x)while the strong monotonicity gives an upper
bound on f (x, y)+ f (y, x).

In order to avoid the strong monotonicity assumption on f , Antipin [1,16] proposed to add
at each iteration an extrapolation step after solving (1). This strategy has also been recently
incorporated in Mastroeni’s algorithm by Tran et al. [29] to obtain the convergence under
the weaker assumption that f is pseudomonotone on C × C , i.e.,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0 ∀ x, y ∈ C,

and that f satisfies condition (2). More precisely, they denote by yk the unique solution of
(1), and they take for xk+1 the solution of the following problem

min
y∈C

{
ck f (yk, y)+ 1

2
‖y − xk‖2

}
.

When f (x, y) = 〈F(x), y − x〉 where F: IRn → IRn , i.e., when problem EP is a variational
inequality problem, it is easy to see that the iterates yk and xk+1 are given by

yk = PC (x
k − ck F(xk)) and xk+1 = PC (x

k − ck F(yk)),

where PC (y) is the orthogonal projection of y over C .
This is the classical extragradient method for solving the single-valued variational inequal-

ity problem. This method has been introduced by Korpelevich in [20]. However, condition
(2) is rather strong. So a well-known strategy to avoid it, is to use an Armijo-backtracking
linesearch along the direction yk − xk to get a point zk which is used to construct an hyper-
plane separating xk from the solution set. Then the new iterate xk+1 is the projection of
xk onto this hyperplane (for more details concerning variational inequality problems, see
[15] and [18]). This strategy has been adapted by Konnov [17,19] for solving differentiable
monotone equilibrium problems. Recently, using the same strategy but for subdifferentia-
ble equilibrium problems, Tran et al. [29] proved the convergence of the resulting method
under the sole assumption that f is pseudomonotone. Nevertheless, all these methods always
assume that solving constrained subproblems can be done efficiently. But it is well known
that the boundary of constraints can destroy some of the nice properties of unconstrained
methods (see a discussion about this in [7]). So it seems interesting to consider unconstrained
subproblems instead of constrained ones.

In this context and when int C �= ∅, Auslender et al. have proposed in [3] a new type of
interior proximal method for solving convex programs by replacing in subproblems (1) the
quadratic term 1

2‖xk − y‖2 by some nonlinear function D(y, xk) composed of two parts:
the first part is based on entropic proximal terms and will play a role of barrier function
forcing the iterates {xk} to remain in the interior of C . The second part is a quadratic convex
regularization based on the set C to preserve the nice properties of the Auxiliary Prob-
lem Principle. So the classical difficulties associated with the boundary of the constraints are
automatically eliminated. This way to transform a constrained problem into an unconstrained
one has already been used by Antipin [16] but with a distance-like function D(y, xk) based
on Bregman functions. However, as mentioned by Auslender (see Theorem 2.1 of [7]), the
distance-like function based on the logarithmic-quadratic function enjoys several nice prop-
erties not shared by other nonquadratic functions. It is the reason why we concentrate our
study on this class of functions.
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In this article, we assume that the interior of C is nonempty. Then the distance-like func-
tion, denoted Dϕ(x, y), is constructed from a class of functions ϕ : IR → (−∞,+∞] of the
form

ϕ(t) = µh(t)+ ν

2
(t − 1)2, (3)

where ν > µ > 0 and h is a closed and proper convex function satisfying the following
additional properties:

(a) h is twice continuously differentiable on (0,+∞), the interior of its domain,
(b) h is strictly convex on its domain,
(c) limt→0+ h

′
(t) = −∞,

(d) h(1) = h
′
(1) = 0 and h

′′
(1) = 1, and

(e) For t > 0, 1 − t−1 ≤ h
′
(t) ≤ t − 1.

Amongst all the functions h satisfying properties (a–e), let us mention the following one:

h(t) =
{

t − log t − 1 if t > 0,
+∞ otherwise.

The corresponding function ϕ is called the logarithmic-quadratic function. It enjoys attrac-
tive properties for developing efficient algorithms (see [7] and [6] for the properties of this
function).

Another function h which is also often used in the literature (see, for example, [10] and
[26]) is

h(t) =
{

t log t − t + 1 if t > 0,
+∞ otherwise.

Associated with ϕ, we consider the ϕ-divergence proximal distance

dϕ(x, y) =
n∑

j=1

y2
jϕ

(
x j

y j

)
∀ x, y ∈ IRn++,

and for any x, y ∈ int C , we define the distance-like function Dϕ by

Dϕ(x, y) = dϕ(l(x), l(y)) ∀ x, y ∈ int C,

where l(x) = (l1(x), . . . , ln(x)) and l j (x) = b j − 〈a j , x〉, j = 1, . . . , n.
It is easy to see that

Dϕ(x, y) = µDh(x, y)+ ν

2
‖A(x − y)‖2 ∀ x, y ∈ int C,

showing the barrier and regularization terms. Note that A being of full rank, the function
(u, v) → 〈AT Au, v〉 defines on IRn an inner product denoted 〈u, v〉A with ‖u‖A := ‖Au‖ =
〈Au, Au〉 1

2 , so that we can write

Dϕ(x, y) = µDh(x, y)+ ν

2
‖x − y‖2

A ∀ x, y ∈ int C. (4)

With this distance, the basic iteration of our method can be written as follows: Given
xk ∈ int C, find xk+1 ∈ int C, the solution of the unconstrained problem

(Pk) min
y

{ck f (xk, y)+ Dϕ(y, xk)}.
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This method has been intensively studied by Auslender et al. for solving particular
equilibrium problems as the convex optimization problems (see, for example, [3,5,7,9]) and
the variational inequality problems (see, for example, [2,4,5,8]). See also [10,11,13,24,30].

Our aim in this paper is to study extragradient methods based on problem (Pk) for solving
the equilibrium problem EP where C = {x | Ax ≤ b}. In the next two sections, we assume
that ϕ is of the form (3) with h a function satisfying properties (a–e).

2 The interior proximal extragradient algorithm

Let us recall some preliminary results which will be used later in our analysis. First, for all
x, y, z ∈ IRn , it is easy to see that

‖x − y‖2
A + ‖x − z‖2

A = ‖y − z‖2
A + 2〈x − z, x − y〉A. (5)

Next, let us introduce a lemma that plays a key role in the convergence analysis.

Lemma 2.1 For all x, y ∈ int C and z ∈ C, it holds that

(i) Dϕ(·, y) is differentiable and strongly convex on int C with modulus ν, i.e.,

〈 ∇1 Dϕ(x, p)− ∇1 Dϕ(y, p), x − y 〉 ≥ ν ‖x − y‖2
A ∀p ∈ int C,

where ∇1 Dϕ(x, p) denotes the gradient of Dϕ(·, p) at x,
(ii) Dϕ(x, y) = 0 if and only if x = y,

(iii) ∇1 Dϕ(x, y) = 0 if and only if x = y,
(iv) 〈∇1 Dϕ(x, y), x − z〉 ≥ (

ν+µ
2

)
(‖x − z‖2

A − ‖y − z‖2
A)+ (

ν−µ
2

) ‖x − y‖2
A.

Proof See Proposition 2.1. in [7] and Proposition 4.1 in [13]. �

The next result is crucial to establish the existence and the characterization of a solution
to subproblem (Pk).

Theorem 2.1 Let F: C → IR ∪{+∞} be a closed proper convex function such that dom F ∩
int C �= ∅. Given x ∈ int C and ck > 0. Then there exists a unique y ∈ int C such that

y = arg min
z

{ck F(z)+ Dϕ(z, x)}

and

0 ∈ ck∂F(y)+ ∇1 Dϕ(y, x),

where ∂F(y) denotes the subdifferential of F at y.

Proof See Lemma 3.3 in [3]. �

Now we present a first interior proximal extragradient algorithm for solving EP.

The Interior Proximal Extragradient Algorithm (IPE).

Step 0 Take x0 ∈ C , choose c0 > 0 and a couple of positive parameters (ν, µ) such that
ν > µ and set k = 0. The corresponding distance function is denoted Dϕ .
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Step 1 Solve the interior proximal convex program

min
y

{ck f (xk, y)+ Dϕ(y, xk)} (6)

to obtain its unique solution yk . If yk = xk , then stop: xk is a solution to EP.
Otherwise, go to Step 2.

Step 2 Solve the interior proximal convex program

min
y

{ck f (yk, y)+ Dϕ(y, xk)} (7)

to obtain its unique solution xk+1.

Step 3 Increase k by 1, choose ck > 0 and return to Step 1.
First observe that the algorithm is well defined. Indeed, thanks to Theorem 2.1 with func-

tion F defined by f (xk, ·) and f (yk, ·), respectively, the subproblems (6) and (7) have a
unique solution and

0 ∈ ck∂2 f (xk, yk)+ ∇1 Dϕ(y
k, xk) and 0 ∈ ck∂2 f (yk, xk+1)+ ∇1 Dϕ(x

k+1, xk),

where ∂2 f (x, y) denotes the subdifferential of f (x, ·) at y.
Consequently, using the definition of the subdifferential, we can write

ck f (xk, y) ≥ ck f (xk, yk)+ 〈∇1 Dϕ(y
k, xk), yk − y〉 ∀ y ∈ C, (8)

and

ck f (yk, y) ≥ ck f (yk, xk+1)+ 〈∇1 Dϕ(x
k+1, xk), xk+1 − y〉 ∀ y ∈ C. (9)

In the next proposition, we justify the stopping criterion.

Proposition 2.1 If yk = xk , then xk is a solution to EP.

Proof When yk = xk , the inequality (8) becomes

ck f (xk, y) ≥ ck f (xk, xk)+ 〈∇1 Dϕ(x
k, xk), xk − y〉 ∀y ∈ C.

Since f (xk, xk) = 0 and ∇1 Dϕ(xk, xk) = 0 (by Lemma 2.1 (iii)), it follows that

ck f (xk, y) ≥ 0 ∀y ∈ C,

i.e., that xk is a solution to EP. �

In order to prove the convergence of the algorithm, let us first consider the dual problem
of EP, namely:

Find x∗ ∈ C such that f (y, x∗) ≤ 0 ∀y ∈ C.

We denote by S∗
d the solution set of this problem and we recall that S∗

d = S∗ when f is
pseudomonotone (see Proposition 1.1.2, p. 5 in [18]). Now we are in a position to prove the
convergence of the IPE algorithm.

Theorem 2.2 Assume that ν > 5µ and that there exist two positive parameters c1 and c2

such that

∀x, y, z ∈ C f (x, y)+ f (y, z) ≥ f (x, z)− c1‖y − x‖2
A − c2‖z − y‖2

A. (10)
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Then the following statements hold:

(i) If x∗ ∈ S∗
d , then

�(xk)−�(xk+1) ≥
(

1

2
− 2µ+ ck c1

ν − µ

)
‖yk − xk‖2

A

+
(

1

2
− µ+ ck c2

ν − µ

)
‖xk+1 − yk‖2

A, (11)

where �(x) =
(

1

2
+ µ

ν − µ

)
‖x − x∗‖2

A;

(ii) If 0 < c ≤ ck < min

{
ν − 5µ

2c1
,
ν − 3µ

2c2

}
, then the sequence {xk} is bounded and

every limit point of {xk} is a solution to EP. In addition, if S∗
d = S∗, then the whole

sequence {xk} tends to a solution of EP.

Proof (i) Take any x∗ ∈ S∗
d and consider the inequality (8) with y = xk+1. Then

ck f (xk, xk+1)− ck f (xk, yk) ≥ 〈∇1 Dϕ(y
k, xk), yk − xk+1〉.

Using first Lemma 2.1 (iv) to the right hand side of this inequality and then the equality (5)
with x = yk, y = xk+1 and z = xk , we obtain successively

ck f (xk, xk+1)− ck f (xk, yk) ≥ θ (‖yk − xk+1‖2
A − ‖xk − xk+1‖2

A)+ (ν − θ)‖yk − xk‖2
A

= θ (−‖yk − xk‖2
A + 2〈yk − xk, yk − xk+1〉A)

+(ν − θ)‖yk − xk‖2
A

= −µ ‖yk − xk‖2
A + (ν + µ)〈yk − xk, yk − xk+1〉A, (12)

where θ = ν + µ

2
.

On the other hand, considering the inequality (9) with y = x∗, we have

ck f (yk, x∗)− ck f (yk, xk+1) ≥ 〈∇1 Dϕ(x
k+1, xk), xk+1 − x∗〉.

Using again Lemma 2.1 (iv) and the equality (5) with x = xk+1 ∈ int C, y = xk ∈ int C ,
z = x∗ ∈ C , we obtain that

ck f (yk, x∗)− ck f (yk, xk+1) ≥ θ(‖xk+1 − x∗‖2
A − ‖xk − x∗‖2

A)+ (ν − θ)‖xk+1 − xk‖2
A

= θ(‖xk+1 − x∗‖2
A − ‖xk − x∗‖2

A)+ (ν − θ)‖xk − x∗‖2
A

−(ν − θ)‖xk+1 − x∗‖2
A

+2(ν − θ)〈xk+1 − xk, xk+1 − x∗〉A

= µ‖xk+1 − x∗‖2
A − µ‖xk − x∗‖2

A

+(ν − µ)〈xk+1 − xk, xk+1 − x∗〉A.
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Noting that ν − µ > 0 and f (yk, x∗) ≤ 0 because x∗ ∈ S∗
d , we deduce from the above

inequality that

〈xk+1 − xk, x∗ − xk+1〉A ≥ ck

ν − µ
f (yk, xk+1)

+ µ

ν − µ
‖xk+1 − x∗‖2

A − µ

ν − µ
‖xk − x∗‖2

A

≥ ck

ν − µ
[ f (xk, xk+1)− f (xk, yk)]

− ckc1

ν − µ
‖yk − xk‖2

A − ckc2

ν − µ
‖xk+1 − yk‖2

A

+ µ

ν − µ
‖xk+1 − x∗‖2

A − µ

ν − µ
‖xk − x∗‖2

A, (13)

where the second inequality is obtained after using assumption (10) with x = xk, y = yk

and z = xk+1.
On the other hand, from equality (5) with x = xk+1, y = x∗, z = xk and then with

x = yk , y = xk+1 and z = xk , we deduce

‖xk − x∗‖2
A − ‖xk+1 − x∗‖2

A = ‖xk+1 − xk‖2
A + 2〈xk+1 − xk, x∗ − xk+1〉A, (14)

and

‖xk+1 − xk‖2
A = −2〈yk − xk, yk − xk+1〉A + ‖xk+1 − yk‖2

A + ‖yk − xk‖2
A. (15)

Finally, using successively (14), (13), (12), (15), and the inequality

〈yk−xk, yk−xk+1〉A ≥ −‖yk − xk‖A ‖yk−xk+1‖A ≥ −1

2
‖yk − xk‖2

A − 1

2
‖yk−xk+1‖2

A,

we obtain the following equalities and inequalities

�(xk)−�(xk+1) = 1

2
‖xk+1 − xk‖2

A + 〈xk+1 − xk, x∗ − xk+1〉A

+ µ

ν − µ
‖xk − x∗‖2

A − µ

ν − µ
‖xk+1 − x∗‖2

A

≥ 1

2
‖xk+1 − xk‖2

A + ck

ν − µ
[ f (xk, xk+1)− f (xk, yk)]

− ckc1

ν − µ
‖yk − xk‖2

A − ckc2

ν − µ
‖xk+1 − yk‖2

A

≥ 1

2
‖xk+1 − xk‖2

A + ν + µ

ν − µ
〈yk − xk, yk − xk+1〉A

−µ+ ckc1

ν − µ
‖yk − xk‖2

A − ckc2

ν − µ
‖xk+1 − yk‖2

A

=
(

1

2
− µ+ ckc1

ν − µ

)
‖yk − xk‖2

A +
(

1

2
− ckc2

ν − µ

)
‖xk+1 − yk‖2

A

+ 2µ

ν − µ

〈
yk − xk, yk − xk+1

〉
A

≥
(

1

2
− 2µ+ ckc1

ν − µ

)
‖yk − xk‖2

A +
(

1

2
− µ+ ckc2

ν − µ

)
‖xk+1 − yk‖2

A.
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(ii) Since ν > 5µ and 0 < ck < min
{
ν−5µ

2c1
,
ν−3µ

2c2

}
, we have 1

2 − 2µ+ck c1
ν−µ > 0 and

1
2 − µ+ck c2

ν−µ > 0. Consequently, from part (i), we obtain that

�(xk)−�(xk+1) ≥
(

1

2
− 2µ+ ckc1

ν − µ

)
‖yk − xk‖2

A ≥ 0 ∀ k.

This implies that the positive sequence {�(xk)} is nonincreasing. Hence this sequence con-
verges in IR and consequently, is bounded and such that

lim
k→+∞ ‖yk − xk‖2

A = 0. (16)

Let x̄ be a limit point of {xk}. Then x̄ = lim
j→+∞ xk j , and, by (16), x̄ = lim

j→+∞ yk j . Using (8)

and Lemma 2.1 (iv), we have for all y ∈ C and all j that

ck j f (xk j , y)− ck j f (xk j , yk j ) ≥ 〈∇1 Dϕ(y
k j , xk j ), yk j − y〉,

≥ ν + µ

2
(‖yk j − y‖2

A − ‖xk j − y‖2
A). (17)

Taking j → +∞ in (17) and noting that f (x̄, x̄) = 0 and 0 < c < ck ≤ min{ ν−5µ
2c1

,
ν−3µ

2c2
},

we obtain

f (x̄, y) ≥ 0 ∀y ∈ C,

which means that x̄ is a solution to EP.
Suppose now that S∗

d = S∗. Then the whole sequence {xk} converges to x̄ . Indeed, defining
�(xk) with x∗ = x̄ ∈ S∗

d , we have �(xk j ) → 0 because xk j → x̄ . So the sequence �(xk)

being nonincreasing, the whole sequence {�(xk)} also converges to 0 and thus ‖xk − x̄‖A →
0, i.e., xk → x̄ . �

When the function f (x, ·) is nonsmooth, it can be difficult to solve subproblems (6) and
(7). In that case, we can use a bundle strategy as in nonsmooth optimization [7] (see also
[21,24,25]). For subproblem (6), the idea is to approximate the function f (xk, ·) from below
by a piecewise linear convex function ψk and to take for the next iterate the solution yk of
the following subproblem

min
y

{ckψ
k(y)+ Dϕ(y, xk)}. (18)

More precisely, ψk is constructed, thanks to a sequence ψk
i , i = 1, 2, . . . as follows:

The starting data are yk
0 = xk , gk

0 ∈ ∂2 f (xk, yk
0 ) and ψk

1 (y) = f (xk, yk
0 )+ 〈gk

0, y − yk
0 〉 for

all y ∈ IRn .
Suppose at iteration i ≥ 1 that ψk

i is known. Then ψk
i+1 is obtained by the following steps:

Step 1 Solve subproblem (18) with ψk replaced by ψk
i to get yk

i ; set dk
i = −∇1 Dϕ(yk

i , xk)

and lk
i (y) = ψk

i (y
k
i )+ 〈dk

i , y − yk
i 〉.

Step 2 Choose ψk
i+1: IRn → IR as a piecewise linear convex function satisfying the condi-

tions:

(C1) lk
i ≤ ψk

i+1 ≤ f (xk, ·)
(C2) f (xk, yk

i )+ 〈gk
i , y − yk

i 〉 ≤ ψk
i+1(y) ∀y ∈ IRn with gk

i ∈ ∂2 f (xk, yk
i ).
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It can be proven (see Theorem 3.2 in [7]) that after finitely many steps i , this algorithm
gives a point yk

i and a model ψk
i such that

f (xk, yk
i ) ≤ η ψk

i (y
k
i ) (0 < η < 1).

In that case we consider that the approximate function ψk
i is appropriate and we set

ψk = ψk
i and yk = yk

i .
Next, in order to obtain an efficient algorithm, the functions ψk

i must be chosen in such a
way that the subproblems (18) (with ψk replaced by ψk

i ) can be easily solved. In [7] it is
shown that for C = IRn+ and

ψk
i+1(y) = max{lk

i (y), f (xk, yk
i )+ 〈gk

i , y − yk
i 〉} for all y ∈ IRn,

the conditions (C1) and (C2) are satisfied and the subproblems (18) can be simplified and
reduced to minimizing a function of a single variable (see also [25], for other examples and
properties of the models ψk

i ). Since a similar strategy can be developed for solving subprob-
lem (7), we finally obtain an implementable algorithm whose convergence results can be
proven exactly as in [25].

3 The interior proximal linesearch extragradient method

Convergence of the IPE algorithm requires that the function f satisfies condition (10). This
condition depends on two positive parameters c1 and c2 and in some cases, they are unknown
or difficult to approximate. So in this section, we modify the second step of the algorithm
using a linesearch and an hyperplane projection step in order to obtain the convergence
without assuming that condition (10) is satisfied. When a quadratic regularization term is
used, this strategy has been initiated by Konnov [17–19] in the particular case where f is
differentiable. The nondifferentiable convex case has been recently considered by Tran et al.
[29]. In this section, we replace the usual quadratic proximal distance by the ϕ-divergence
proximal distance Dϕ defined in (4), and as in [29], we suppose that

(A1) C is contained in an open convex set 	 ⊂ IRn ,
(A2) f : 	× 	 → IR is a continuous function satisfying f (x, x) = 0 for each x ∈ 	 and

f (x, ·) is convex for each x ∈ 	.

Before giving the algorithm and in order to obtain more flexibility in the choice of the step-
length, we introduce a sequence {γk} which satisfies the properties

γk ∈ (0, 2) ∀k = 0, 1, . . . and lim inf
k→+∞ γk(2 − γk) > 0. (19)

Obviously, γk = 1 for all k is an example of such a sequence.

The Interior Proximal Linesearch Extragradient Algorithm (IPLE).

Step 0 Take x0 ∈ int C , choose θ ∈ (0, 1), τ ∈ (0, 1), α ∈ (0, 1), c > 0, c0 ≥ c > 0 and
choose positive parameters ν, µ such that ν > µ. Set k = 0.

Step 1 Solve the convex program

min
y

{ck f (xk, y)+ Dϕ(y, xk)} (20)
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to obtain its unique solution yk . If yk = xk , then STOP: xk is a solution to EP. Otherwise,
go to Step2.

Step 2 Find the smallest nonnegative integer m such that

f (zk,m, xk)− f (zk,m, yk) ≥ α

ck
Dϕ(y

k, xk), (21)

where zk,m = (1 − θm)xk + θm yk . Set zk = zk,m and go to Step 3.

Step 3 Take gk ∈ ∂2 f (zk, xk).

Compute σk = f (zk, xk)

‖gk‖2 and xk+1 = (1 − τ) xk + τ PC (xk − γk σk gk), where PC (z)

denotes the orthogonal projection of z over C .

Step 4 Increase k by 1, choose ck ≥ c > 0 and return to Step 1.

Remark 3.1 Algorithm (IPLE) is an extension of the combined relaxation method proposed
by Konnov [19] for solving a differentiable monotone equilibrium problem. The Armijo-
backtracking linesearch (Step 2) is slightly different from Konnov’s one to take account of
the ϕ-divergence proximal distance and of the fact that f is nondifferentiable. The hyper-
plane projection step (Step 3) is similar, a subgradient gk of f (zk, ·) replacing the gradient
of f (zk, ·).

In order to see that Algorithm (IPLE) is well defined, first observe that, by Theorem 2.1,
the solution yk of problem (20) exists and is unique. Furthermore, if xk ∈ int C , then xk+1

also belongs to int C because τ ∈ (0, 1). Finally to state that the linesearch is also well
defined, we introduce the following lemma:

Lemma 3.1 Assume that yk �= xk for some k. Then the next three properties hold:

(i) There exists a nonnegative integer m satisfying (21);
(ii) f (zk, xk) > 0;

(iii) 0 �∈ ∂2 f (zk, xk).

Proof (i) By contradiction, we suppose that statement (i) is not true, i.e., that for all non-
negative integer m, we have the inequality

f (zk,m, xk)− f (zk,m, yk) <
α

ck
Dϕ(y

k, xk).

Let m → +∞. Then zk,m → xk and because f is continuous on C × C and f (x, x) = 0
for all x ∈ C , we obtain

ck f (xk, yk)+ αDϕ(y
k, xk) ≥ 0. (22)

On the other hand, because yk is a solution of (20), we have

ck f (xk, yk)+ Dϕ(y
k, xk) ≤ ck f (xk, y)+ Dϕ(y, xk) ∀y ∈ int C.

Taking y = xk in this inequality and noting that f (xk, xk) = 0 and Dϕ(xk, xk) = 0, we
deduce

ck f (xk, yk)+ Dϕ(y
k, xk) ≤ 0.

Combining this inequality and (22) and noting that Dϕ(yk, xk) > 0 because yk �= xk , we
obtain α ≥ 1. But this contradicts the assumption and thus there exists a nonnegative integer
m satisfying (21).
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(ii) Because f is convex with respect to the second argument, it follows from the definition
of zk that

0 = f (zk, zk) ≤ (1 − θm) f (zk, xk)+ θm f (zk, yk). (23)

Hence, using (21), we obtain

f (zk, xk) ≥ θm( f (zk, xk)− f (zk, yk)) ≥ αθm

ck
Dϕ(y

k, xk) > 0.

(iii) By contradiction, let us suppose that 0 ∈ ∂2 f (zk, xk), i.e., that

f (zk, y) ≥ f (zk, xk), ∀y ∈ C.

Taking y = zk , we obtain that f (zk, xk) ≤ 0. This contradicts (i i), and so (i i i) holds. �

The following lemmas are the key results in our analysis of the convergence of the algo-
rithm (IPLE).

Lemma 3.2 (i) The sequence {xk} is bounded and for every solution x∗ ∈ S∗
d , the following

inequality holds

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − τγk(2 − γk)(σk‖gk‖)2;

(i i)
+∞∑
k=0

γk(2 − γk)(σk‖gk‖)2 < +∞.

Proof (i) Take x∗ ∈ S∗
d . Using successively the definition of xk+1, the convexity of ‖ · ‖2

and the nonexpansiveness of the projection, we have

‖xk+1 − x∗‖2 = ‖(1 − τ)xk + τ PC (x
k − γkσk gk)− x∗‖2

= ‖(1 − τ)(xk − x∗)+ τ [PC (x
k − γkσk gk)− x∗]‖2

≤ (1 − τ)‖xk − x∗‖2 + τ‖PC (x
k − γkσk gk)− x∗‖2

≤ (1 − τ)‖xk − x∗‖2 + τ‖xk − γkσk gk − x∗‖2

= ‖xk − x∗‖2 + τ‖γkσk gk‖2 − 2τ 〈γkσk gk, xk − x∗〉. (24)

On the other hand, because gk ∈ ∂2 f (zk, xk), it follows that

f (zk, x∗) ≥ f (zk, xk)+ 〈gk, x∗ − xk〉.

Furthermore, since f (zk, x∗) ≤ 0 and σk = f (zk, xk)

‖gk‖2 , we obtain from the previous inequal-

ity that

〈gk, xk − x∗〉 ≥ σk‖gk‖2.

Using this inequality in (24), we deduce that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + τ‖γkσk gk‖2 − 2τγk‖σk gk‖2

= ‖xk − x∗‖2 − τγk(2 − γk)(σk‖gk‖)2.
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In particular, this implies that the sequence {xk} is bounded.
(ii) We easily deduce from part (i) that for all m ∈ IN , we have

0 ≤
m∑

k=0

τγk(2 − γk)(σk‖gk‖)2 ≤ ‖x0 − x∗‖2 − ‖xm+1 − x∗‖2 ≤ ‖x0 − x∗‖2.

So, taking m → +∞, we obtain

+∞∑
k=0

γk(2 − γk)(σk‖gk‖)2 < +∞.

�

Lemma 3.3 Let x̄ be a limit point of {xk} and let xk j → x̄ . Then the sequences {yk j }, {zk j }
and {gk j } are bounded providing that ck j ≤ c̄ for all j .

Proof Since the sequence {xk} is bounded, it suffices to prove that there exists M such that
‖xk j − yk j ‖ ≤ M for j large enough to obtain that the sequence {yk j } is bounded. Without
loss of generality, we suppose, that yk j �= xk j for all j , and we set S(y) = ck j f (xk j , y) +
D̄ϕ(y, xk j ).

Since f (xk j , ·) is convex and since, by Lemma 2.1 (i), the function Dϕ(·, xk j ) is strongly
convex on int C with modulus ν > 0, we have, for all y1, y2 ∈ int C , g1 ∈ ∂S(y1) and
g2 ∈ ∂S(y2) that

〈g1 − g2, y1 − y2〉 ≥ ν‖y1 − y2‖2
A ≥ ν λmin(A

T A)‖y1 − y2‖2,

where λmin(AT A) denotes the smallest eigenvalue of the matrix AT A.
Taking y1 = xk j and y2 = yk j and noting that 0 ∈ ∂S(yk j ) by definition of yk j , we

deduce from the previous inequality that

∀g j ∈ ∂S(xk j ) ν λmin(A
T A)‖xk j − yk j ‖2 ≤ 〈g j , xk j − yk j 〉 ≤ ‖g j‖ ‖xk j − yk j ‖.

Since yk j �= xk j , and since, by Lemma 2.1 (i i i), ∇1 Dϕ(xk j , xk j ) = 0, we can write

∀g j ∈ ∂2 f (xk j , xk j ) ν λmin(A
T A)‖xk j − yk j ‖ ≤ ‖g j‖. (25)

On the other hand, let the sequence { f j } j∈IN be defined for all j ∈ IN by f j = f (xk j , ·). By
continuity of f , this sequence of convex functions converges pointwise to the convex func-
tion f (x̄, ·). Since xk j → x̄ ∈ 	 and since f (x̄, ·) is finite on 	, it follows from Theorem
24.5 in [27] that there exists an index j0 such that

∀ j ≥ j0, ∂ f (xk j , xk j ) ⊂ ∂ f (x̄, x̄)+ B,

where B is the closed Euclidean unit ball of IRn . Since g j ∈ ∂2 f (xk j , xk j ) for all j and
∂2 f (x̄, x̄) is bounded, this inclusion implies that the right-hand side of (25) is bounded. So
there exists M > 0 such that ‖xk j − yk j ‖ ≤ M for all j ≥ j0, and the sequence {yk j } is
bounded.
The sequence {zk j } being a convex combination of xk j and yk j , it is very easy to see that the
sequence {zk j } is also bounded and that there exists a subsequence of {zk j }, again denoted
{zk j }, that converges to z̄ ∈ C .

Finally, to prove that the sequence {gk j } is bounded, we proceed exactly as for the sequence
{g j } but this time with the sequence { f j } j∈IN defined for all j ∈ IN by f j = f (zk j , ·). �
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Thanks to Lemmas 3.2 and 3.3, we can deduce the following convergence result.

Theorem 3.1 Assume that the properties (A1) and (A2) are satisfied and that 0 < c ≤ ck ≤
c̄ for all k. Then the following statements hold:

(i) Every limit point of {xk} is a solution to EP;

(ii) If S∗ = S∗
d then the whole sequence {xk} converges to a solution of EP.

Proof (i) Let x̄ be a limit point of {xk} and xk j → x̄ . Applying Lemma 3.2 (i i) and (19),
we deduce that

σk j ‖gk j ‖ → 0,

i.e., by using the definition of σk j , that

f (zk j , xk j )

‖gk j ‖ → 0.

Since, by Lemma 3.3, the sequence {gk j } is bounded, we obtain that f (zk j , xk j ) → 0 as
j → +∞. Furthermore, it follows from (23) that for all j ,

f (zk j , xk j )− f (zk j , yk j ) ≤ 1

θm
f (zk j , xk j ).

Combining this inequality with (21) and noting, from (4), that Dϕ(yk j , xk j ) ≥ ν
2 ‖yk j −xk j ‖2

A,
we have

α ν

2ck j

‖yk j − xk j ‖2
A ≤ 1

θm
f (zk j , xk j ).

Consequently, since ck j ≤ c̄ for all j and f (zk j , xk j ) → 0 as j → +∞, we have

lim
j→+∞ ‖yk j − xk j ‖2

A = 0,

and yk j → x̄ because xk j → x̄ . Finally, using Theorem 2.1 and Lemma 2.1, we obtain again
inequality (17). Taking the limit j → +∞ in (17), using the continuity of f and observing
that f (x̄, x̄) = 0 and 0 < c ≤ ck j ≤ c̄ for all j , we deduce immediately that f (x̄, y) ≥ 0
for all y ∈ C , i.e., x̄ is a solution to EP.
(ii) Let x̄ ∈ S∗ be a limit point of the sequence {xk}. Because S∗ = S∗

d , it follows that x̄ ∈ S∗
d .

Applying Lemma 3.2 (i), we have that the sequence {‖xk − x̄‖}k is nonincreasing and since
it has a subsequence converging to 0, it converges to zero. Hence, the whole sequence {xk}
converges to x̄ ∈ S∗. �

Remark 3.2 The (IPE) and (IPLE) algorithms can be interpreted as prediction-correction
methods. Indeed, Step 1 gives a prediction step while Step 2 for (IPE) and Step 3 for (IPLE)
bring a correction step. Recently, such strategies have been intensively used for solving
nonlinear complementarity problems (NLC), i.e., problems where the constraint set and the
equilibrium function are given by

C = IRn+ and f (x, y) = 〈F(x), y − x〉 ∀x, y ∈ C, (26)

with F: IRn → IRn a (pseudo)monotone and continuous mapping (see, for example, [10,26,
30,31]).
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In these papers, the proximal-point iteration is used in the prediction step and consists,
given xk , in finding a solution x̃ k of the system in x :

ck F(x)+ x − (1 − µ)xk − µX2
k x−1 = ξ k

when ϕ(t) = ν
2 (t − 1)2 + µ(t − log t − 1) and of the system

ck F(x)+ x − xk + µXk log
x

xk
= ξ k

when ϕ(t) = 1
2 (t − 1)2 + µ(t log t − t + 1).

Here Xk =diag(xk) and x−1 denotes the vector (x−1
1 , . . . , x−1

n ). Furthermore, the error ξ k

must satisfy the condition: ‖ξ k‖ ≤ η‖xk − x̃ k‖, 0 < η < 1.
For the NLC problem, a practical choice for ξ k is to take ξ k = ck F(x) − ck F(xk) so that
the two previous systems become

ck F(xk)+ x − (1 − µ)xk − µX2
k x−1 = 0 and ck F(xk)+ x − xk + µXk log

x

xk
= 0,

following the choice of ϕ. These systems are in fact the optimality conditions associated
with Step 1 in our two algorithms when C and f are as in (26). Let us also observe that the
correction step in [26] is similar to Step 2 in (IPE) and the ones in [10,30,31] to Step 3 in
(IPLE) when no Armijo-backtracking linesearch is done. In this sense, we can say that our
algorithms can be considered as generalizations of the algorithms mentioned above for solv-
ing the NLC problem. To end this section, let us also notice that a comparison with Solodov
and Svaiter’s method [28] is developed in [10].

4 Numerical results

The aim of this section is to illustrate the proposed algorithms on a class of equilibrium
problems where C = IRn+ and the equilibrium function f : C × C → IR is of the form

f (x, y) = 〈Px + Qy + q, y − x〉,
with P and Q two matrices of dimension n. The corresponding equilibrium problem is a
generalized form of an equilibrium problem defined by the Nash-Cournot equilibrium model
considered in [23]. Let us also notice that this problem, in general, is not a variational inequal-
ity problem.

In order to fulfill the assumptions imposed in the previous sections, we suppose that the
matrices P and Q are chosen such that Q is symmetric positive definite and Q− P is negative
semidefinite. Under these assumptions, it can be proven (see [29], p. 23) that f is continuous
and monotone, that f (x, ·) is differentiable and convex for all x ∈ C and that condition (2)
is satisfied with c1 = c2 = 1

2‖P − Q‖.
With this choice of function f , solving subproblem (6) amounts to solving the subproblem

min
y

g(y)+ Dϕ(y, xk), (27)

where g(y) = ck yT Qy + ckbT y and b = (P − Q)x + q . The domain of the objective
function of this problem is IRn+. So it is advisable to first solve its Fenchel dual

min
u

g∗(u)+ Dϕ(·, xk)∗(−u)
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for the reason that its objective function is finite everywhere. Indeed the domain of ϕ∗ is
equal to IR and for all u ∈ IRn , the functions

g∗(u) = 1

4ck
〈u − ckb, Q−1(u − ckb)〉 and Dϕ(·, xk)∗(u) =

n∑
j=1

(
xk

j

)2
ϕ∗

(
u j

xk
j

)

are finite.
Furthermore, since ϕ∗(t) and (ϕ∗)′(t) can be explicitly computed [7], it is possible to solve
the Fenchel dual by using an efficient unconstrained optimization method. Let u∗ denote the
solution of this problem. Then the solution yk of the subproblem (27) can be recovered by
using the formula

(yk) j = xk
j (ϕ

∗)′
(

−u∗
j

xk
j

)
j = 1, . . . , n.

To illustrate our two algorithms, we introduce three academic numerical tests of small size.
Our purpose is to compare the behavior of the two algorithms. The data are the following
ones: for the first two examples, the matrix Q and the vector q are

Q =

⎡
⎢⎢⎢⎢⎣

1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ and q =

⎡
⎢⎢⎢⎢⎣

−1
−2
−1

2
−1

⎤
⎥⎥⎥⎥⎦,

while for the third example, they are

Q =

⎡
⎢⎢⎢⎢⎣

2.3550 1.6364 1.8430 2.1540 0.7586
1.6364 1.6620 1.5323 1.4876 0.2901
1.8430 1.5323 2.4317 2.2961 1.0964
2.1540 1.4876 2.2961 2.8473 1.2273
0.7586 0.2901 1.0964 1.2273 0.8085

⎤
⎥⎥⎥⎥⎦ and q =

⎡
⎢⎢⎢⎢⎣

−1
−1

0
0
0

⎤
⎥⎥⎥⎥⎦.

The matrix P is chosen successively equal to
⎡
⎢⎢⎢⎢⎣

3.1 2.0 0 0 0
2.0 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

3.1 2.0 0 0 0
2.0 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦ and 10I,

where I denotes the identity matrix. The parameters are fixed to ν = 7, µ = 1, ck = 1/c1

for Algorithm IPE, and to ν = 2, µ = 1, θ = 0.99, α = 0.49, τ = 0.999 for Algorithm
IPLE. For this algorithm, ck is equal to 0.7 for the first two examples and to 0.1 for the third
one. Finally the starting point is x0 = (1, 3, 1, 1, 2) for all the tests. The results are reported
in the table below:

Example 1 Example 2 Example 3
Algorithm IPE IPLE IPE IPLE IPE IPLE
it 19 1305 20 1342 40 228
cpu (second) 1.078 26.89 1.296 27.64 10.875 13.25
optimality −0.00000 −0.00257 −0.00000 −0.00237 −0.00006 −0.00152
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where ‘it’ and ‘cpu’ stand for the number of iterations and the cpu time, respectively. The two
algorithms give the same solution for each example. Two constraints are active at the solution
for Examples 1 and 2. Three constraints are active for the third example. Furthermore for
checking the quality of the solution x obtained by each algorithm, we solve the minimization
problem miny≥0 f (x, y) whose optimal value must be equal to zero when x is the exact
solution of (EP). This optimal value is denoted ‘optimality’ in the table.

From the preliminary numerical results reported in the table, the first algorithm seems to
be the most efficient. For each example, the total number of iterations is much smaller for
this algorithm than for the second one as well as the cpu time. Furthermore it is also the most
robust in the sense that the quality of the solution is the best. But this could be due to the fact
that for the second algorithm, an unconstrained minimization problem is replaced at each
iteration by a gradient step which usually slows down the convergence.
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